State Estimation with Unknown Input and Measurement Noise Reconstruction Based on Descriptor Systems

نویسندگان

  • Fanglai Zhu
  • Liyun Xu
  • Wei Zhang
  • Wu Fan
چکیده

-The paper considers the problems of state estimation, unknown input and measurement disturbance reconstruction for a class of Lipschitz nonlinear system. By taking the measurement disturbance vector as an extended state vector, the original system is transformed into an augmented descriptor system. For the descriptor system, the necessary and sufficient condition of the existence of the unknown input observer is discussed first. Second, an adaptive and robust sliding mode observer which can estimate the states and the measurement disturbance of original system simultaneously is developed. Third, a second-order high gain sliding mode observer is used to exactly estimate the derivatives of the system outputs in a finite time. By using the estimates of the states and the output derivatives, a kind of algebraic unknown input reconstruction method is proposed. Finally, a simulation example to a modified single-link flexible joint robot is given to illustrate the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuously-implemented sliding-mode adaptive unknown-input observers under noisy measurements

We propose an estimator for nonlinear systems with unmatched unknown inputs and under measurement noise. The estimator design is based on the combination of observer design for descriptor systems, sliding-modes theory and adaptive control. The estimation of the measurement noise is achieved thanks to the transformation of the original system into a singular form where the measurement noise make...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems

Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...

متن کامل

Online State Space Model Parameter Estimation in Synchronous Machines

The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014